Презентация на тему золотое сечение высшее совершенство. Презентация - Золотое сечение или «божественная пропорция» в природе. Чему же равно золотое сечение

Слайд 2

Связь между последовательностью Фибоначчи и « Золотым сечением».

Слайд 3

Последовательность Фибоначчи.

Наибольший интерес представляет для нас сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими (арабскими) цифрами. Сообщаемый в "Книге абака" материал поясняется на примерах задач, составляющих значительную часть этого тракта.

Слайд 4

Задача.

Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рождают кролики со второго месяца после своего рождения. Решение. Ясно, что если считать первую пару кроликов новорожденными, то на второй месяц мы будем по прежнему иметь одну пару; на 3-й месяц- 1+1=2; на 4-й- 2+1=3 пары(ибо из двух имеющихся пар потомство дает лишь одна пара); на 5-й месяц- 3+2=5 пар (лишь 2 родившиеся на 3-й месяц пары дадут потомство на 5-й месяц); на 6-й месяц- 5+3=8 пар (ибо потомство дадут только те пары, которые родились на 4-м месяце) и т. д.

Слайд 5

Графическое изображение задачи Фибоначчи.

  • Слайд 6

    Решение.

    Таким образом, если обозначить число пар кроликов, имеющихся на n-м месяце через Fk , то F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, F7=13, F8=21 и т. д., причем образование этих чисел регулируется общим законом: Fn=Fn-1+Fn-2 при всех n>2, ведь число пар кроликов на n-м месяце равно числу Fn-1 пар кроликов на предшествующем месяце плюс число вновь родившихся пар, которое совпадает с числом Fn-2 пар кроликов, родившихся на (n-2)-ом месяце (ибо лишь эти пары кроликов дают потомство). Числа Fn , образующие последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... называются " числами Фибоначчи",а сама последовательность - последовательностью Фибоначчи.

    Слайд 7

    Связь между последовательностью Фибоначчи и «Золотым сечением»

    Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (напpимеp, 13:8), результатом будет величина, колеблющаяся около иppационального значения 1.61803398875... и через pаз то превосходящая, то не достигающая его. Hо даже затратив на это Вечность, невозможно узнать соотношение точно, до последней десятичной цифры. Kpаткости ради, мы будем приводить его в виде 1.618.

    Слайд 8

    Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (средневековый математик) назвал его Божественной пpопоpцией. Cpеди его современных названий есть такие, как Золотое сечение, Золотое среднее и отношение вертящихся квадpатов.Kеплеp назвал это соотношение одним из "сокровищ геометрии". В алгебре общепринято его обозначение греческой буквой «фи»: φ=1.618

    Слайд 9

    Так что же такое « Золотое сечение»?

    Слайд 10

    «Золотое сечение»

    Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление),деление отрезка АС на две части таким образом, что большая его часть АВ относиться к меньшей ВС, так как весь отрезок АС относиться к АВ (т.е. АВ:ВС= АС:АВ). Принципы золотого сечения используются в архитектуре и в изобразительных искусствах. Термин «золотое сечение» ввел Леонардо да Винчи, а в научный обиход это понятие ввел Пифагор. А С

    Слайд 11

    Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

    Слайд 12

    Геометрическое изображение золотойпропорции.

    a: b = b: c или с: b = b: а.

    Слайд 14

    Звездчатый пятиугольник.

    В звездчатом пятиугольнике каждая из пяти линий, составляющих эту фигуру, делит другую в отношении золотого сечения, а концы звезды являются золотыми треугольниками.

    Слайд 15

    История « Золотого сечения».

    Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Пифагор

    Слайд 16

    Античный циркуль « Золотого сечения»

    В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

    Слайд 17

    Изучение « Золотого сечения» Леонардо да Винчи

    Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

    Слайд 18

    Работа Цейзинга

    Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа - важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д.

    Слайд 19

    Золотые пропорции в фигуре человека.

  • Слайд 20

    « Золотое сечение в природе»

    Слайд 21

    Раковина.

    Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе.

    Слайд 22

    Цикорий(растение).

    Среди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий - 38, четвертый - 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

    Слайд 23

    Ящерица.

    В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38. И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.

    Слайд 24

    Яйцо птицы.

    Аналогичный пример с ящерицей. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

    Слайд 25

    Архитектурные загадки

    Слайд 26

    Ключ к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты. Площадь треугольника 356 x 440 / 2 = 78320 Площадь квадрата 280 x 280 = 78400

    Слайд 27

    Вывод.

    Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью - передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет важную роль.

    Слайд 28

    «Золотое сечение» в искусстве.

    Слайд 29

    Фильм по правилам « Золотого сечения»

    Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции «золотого сечения». Так, известно, что С. Эйзенштейнискусственно построил фильм Броненосец Потёмкинпо правилам «золотого сечения». Он разбил ленту на пять частей. В первых трёх действие разворачивается на корабле. В двух последних - в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения.

    Слайд 30

    В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения. Эйзенштейн считал, что так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный

    Слайд 31

    Золотое сечение и зрительные центры.

    Другим примером использования правила «Золотого сечения» в киноискусстве - расположение основных компонентов кадра в особых точках - «зрительных центрах». Часто используются четыре точки, расположенные на расстоянии 3/8 и 5/8 от соответствующих краёв плоскости.

    Слайд 32

    Найдите примеры «золотого сечения» вокруг себя, в природе, архитектуре, живописи.

    Посмотреть все слайды

    Cлайд 1

    «Золотое сечение» (виртуальный факультатив) Составитель - Процко Т.М. – учитель математики МГМЛ при МГТУ им. Г.И.Носова

    Cлайд 2

    содержание Основатели учения о золотом сечении Понятие золотого сечения Золотое сечение в архитектуре Золотое сечение в живописи Золотое сечение в живых организмах Пентаграмма Самый «правильный» многогранник Золотое сечение вокруг нас Список используемой литературы

    Cлайд 3

    «Довольно почестей Александрам! Да здравствуют Архимеды!» Сен-Симон А. Пропорции, т.е. равенства отношений изучались пифагорейцами. Евдокс развил учение о пропорциях–одно из величайших достижений греческой математики. Термин «золотое сечение» ввёл Леонардо да Винчи. Евдокс (408 – ок.355 г.г.до н.э.) Пифагор (580-500 г.г.до н.э.) Леонардо да Винчи (1452-1519 г.г.)

    Cлайд 4

    «Сравнение математических фигур и величин служит материалом для игр и обучения мудрости» Песталоцци И.Г. Определение золотого сечения: целое относится к его большей части так же, как большая часть относится к меньшей части. Отрезок АВ так относится к его большей части AD, как эта большая часть AD относится к его меньшей части DB. Иначе говоря, точка D делит отрезок AB в «золотой пропорции».

    Cлайд 5

    Есть предположение, что Пифагор понятие золотого сечения позаимствовал у египтян и вавилонян. И, действительно пропорции пирамиды Хеопса, барельефы предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношением золотого сечения при их создании. Пирамида Хеопса «Есть в математике нечто вызывающее восторг» Хаусдорф Ф.

    Cлайд 6

    «Гёте удачно назвал благородный собор «окаменелой музыкой», …» Юнг Д. Церковь Покрова Богородицы на Нерли 1165 год «Простая» красота пропорций золотого сечения.

    Cлайд 7

    «…, но, быть может, ещё лучше было бы назвать такой собор «окаменелой математикой» Юнг Д. Пропорции Покровского Собора на Красной площади в Москве определяются восемью членами ряда золотого сечения: Многие члены ряда золотого сечения повторяются в затейливых элементах храма многократно:

    Cлайд 8

    Сандро Ботичелли «Рождение Венеры» (около 1485 г). Пропорции Венеры выполнены в золотом сечении. «Поистине живопись – наука и законная дочь природы…» Леонардо да Винчи

    Cлайд 9

    «Высшее назначение математики…состоит в том, чтобы находить скрытый порядок в хаосе, который нас окружает». Винер Н. «Человеку, сведущему в геометрии и работающему с нею, становятся доступны… все те высшие наслаждения, которые называются наслаждениями математического порядка… Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Стоит поразмыслить о прошлом, вспомнить то, что было ранее, и мы будем ошеломлены, видя, что окружающий нас мир – это мир геометрии, чистой, истинной, безупречной в наших глазах. Всё вокруг – геометрия». Ле Корбюзье Пропорции идеальной фигуры человека, по Корбюзье, должны подчиняться золотому сечению. Модулор Ле Корбюзье

    Cлайд 10

    пропорции, близкие к золотому сечению. «Пристальное и глубокое изучение природы есть источник самых плодотворных открытий математики» Фурье Ж.

    Cлайд 11

    «Не знающий геометрии да не войдёт в Академию». Платон Пентаграмма – тайный знак пифагорейского братства – была выбрана ими в качестве символа жизни и здоровья. Согласно легенде, один пифагореец заболел на чужбине и не мог перед смертью расплатиться с ухаживающим за ним хозяином дома. Последний нарисовал на стене своего дома звёздчатый пятиугольник. Увидав через несколько лет этот знак, другой странствующий пифагореец осведомился о случившимся у хозяина и щедро его вознаградил. «Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора, а другое – деление отрезка в «золотом сечении». Первое можно сравнить с мерой золота; второе же больше напоминает драгоценный камень» Иоганн Кеплер

    Cлайд 12

    «Ходить превыше звёзд влечёт меня охота, И облаком нестись, презрев земную низкость.» М.В.Ломоносов Пентаграмму изображали для того, чтобы спастись от проникновения в дом злых духов. Отрывок из «Фауста»: М е ф и с т о ф е л ь Трудновато выйти мне теперь. Тут кое – что мешает мне немного: Волшебный знак у вашего порога. Ф а у с т Так пентаграмма этому виной? Но как же бес пробрался ты за мной? Каким путём впросак попался? М е ф и с т о ф е л ь Изволили её вы плохо начертить. И промежуток в уголку остался, Там, у дверей, - и я свободно мог вскочить.

    Cлайд 13

    «Тысячи путей ведут к заблуждению, к истине – только один» Жан Жак Руссо Пентаграмма пропорциональна и, значит, красива. Не случайно и сегодня пятиконечная звезда реет на флагах едва ли не половины стран мира.

    Cлайд 14

    «Мудрее всего – время, ибо оно раскрывает всё» Фалес Столь необычайно пропорциональное строение пентаграммы, красота её внутреннего математического содержания являются основой её внешней красоты.

    Cлайд 15

    «Ни тридцать лет ни тридцать столетий не оказывают никакого влияния на ясность или на красоту геометрических тел» Кэррол Л. (Додгсон) Раифский мужской монастырь – единственный в Татарии сохранившийся монастырский комплекс, построенный в XVII веке. Комплекс имеет форму пятиугольника. Пентагон в США. Комплекс имеет форму правильного пятиугольника, сотканного из золотых пропорций.

    Cлайд 16

    «Если бы мне пришлось начать вновь своё обучение то я последовал бы совету Платона и принялся бы сперва за математику». Галилей Г. По Платону: пять правильных многогранников – пять стихий. Додекаэдр олицетворяет вселенную. Платон считал додекаэдр самым «правильным» из всех правильных многогранников, т. к. его грани – правильные пятиугольники – сотканы из золотых пропорций.

    Cлайд 17

    «…Мир Во всей его живой архитектуре – Орган поющий, море труб, клавир, Не умирающий ни в радости, ни в буре.» Н. Заболоцкий Кристаллы пирита имеют форму додекаэдра – поверхности, составленной из 12 правильных пятиугольников. Как показывают раскопки в Италии, пирит был любимой игрушкой этрусских детей во времена Пифагора. Кристаллы пирита / Рисунок кристалла пирита

    Презентацию выполнил

    Презентацию выполнил учащийся 6 «А» класса МОУ СОШ № 5 г. Кстово Красильников Владимир Учитель Гущина Т.Л. 2011г.

    Золотое сечение (золотая пропорция)

    Деление непрерывной величины на две части

    в таком отношении, при котором

    большая часть так относится к меньшей, как вся величина к большей.

    Термин «золотое сечение»

    (goldener Schnitt)

    был введён в обиход

    Мартином Омом в 1835 году.

    Золотое сечение отрезка AB можно построить следующим образом: в точке B восстанавливают перпендикуляр к AB, откладывают на нём отрезок BC, равный половине AB, на отрезке AC откладывают отрезок AD, равный AC − CB, и наконец, на отрезке AB откладывают отрезок AE, равный AD.

    Отрезав квадрат от прямоугольника,

    построенного по принципу золотого сечения,

    мы получаем новый, уменьшенный прямоугольник

    с тем же отношением сторон

    Каждый конец пятиугольной звезды

    представляет собой золотой треугольник.

    Его стороны образуют угол 36° при вершине,

    а основание, отложенное на боковую сторону,

    делит ее в пропорции золотого сечения.

    Пифагор – древнегреческий философ и математик

    Vl в. до н. э.

    Первый ввёл понятие золотого сечения

    Пирамида Хеопса

    площадь боковой поверхности Пирамиды относится к площади основания, как площадь полной поверхности Пирамиды к площади боковой поверхности.

    Гробница Тутанхамона

    Ряд Фибоначчи

    С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618.

    Применил золотое сечение

    создавая геометрию

    Рассказывал, что Вселенная устроена согласно золотому сечению

    Аристотель

    Нашёл соответствие золотого сечения этическому закону

    Лука Пачоли

    1509 издал книгу

    «Божественная пропорция»

    1 побег- 100ед.

    Размер грудной и брюшной части тела отвечает

    золотой пропорции

    Яйцо птицы имеет

    золотые пропорции

    Длинна хвоста ящерицы относится к длиннее остального тела как 62 к 38

    Подчёркивал тенденцию природы к спиральности

    Спирали в

    Живой природе

    Пропорция тела человека

    имеет золотое сечение

    Золотое сечение

    в скульптуре

    Знаменитая статуя

    Аполлона Бельведерского

    Скульптор Фидий

    Использовал золотое сечение в статуях

    Афины Парфенос и Зевса Олимпийского

    Золотое сечение

    в архитектуре

    Парфенон V в. до н. э.

    Здание сената в Кремле

    Архитектор М. Казаков

    Первая клиническая больница

    Пирогова

    Архитектор М. Казаков

    Дом Пашкова

    Архитектор Бажов

    Золотое сечение

    в живописи

    Леонардо да Винчи

    Портрет Монны Лизы

    Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии.

    Золотое сечение

    Л.Л. Сабанеев

    Аренский Бетховен Бородин Гайдн

    Моцарт Скрябин Шопен Шуберт

    90% всех их произведений - Золотое сечение

    "В геометрии существует два сокровища - теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем". "В геометрии существует два сокровища - теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем".

    астроном Иоганн Кеплер

    Слайд 2

    Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

    Слайд 3

    Зодчий Хесира.

    Рельеф. Начало 3 тыс. до н.э. «Портретный деревянный рельеф «Зодчий Хесира» создан в начале III тысячелетия до н.э., пятьдесят веков тому назад. Мускулистое стройное тело живет; чувствуется мерный ритм пружи-нящей поступи, орлиный профиль прекрасен. Глядя на этот рельеф, начина-ешь понимать, в чем художественный смысл «распластанности» египетских фигур. Египетские рисовальщики оценили значение плечевого пояса как кон-структивной основы туловища и раз навсегда выделили эту выразительную горизонтальность, пренебрегая тем, что она скрадывается при профильном положении фигуры. Они отобрали из фасного и профильного положения са-мые четкие, ясно читаемые аспекты, объединив их вместе с замечательной ограниченностью и при этом достигнув гармонии с двухмерной плоскостью, на которой помещено изображение.

    Слайд 4

    П и р а м и ды…

    Учеба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени. Здесь же Пифагор попадает в персидский плен. Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой

    Слайд 5

    Пифагор

    Золотое сечение – гармоническая пропорция В математике пропорцией (лат. proportio) называют равенство двух отношений: a: b = c: d. Отрезок прямой АВ можно разделить на две части следующими способами: на две равные части – АВ: АС = АВ: ВС; на две неравные части в любом отношении (такие части пропорции не образуют); таким образом, когда АВ: АС = АС: ВС. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a: b = b: c или с: b = b: а. Рис. 1. Геометрическое изображение золотой пропорции

    Слайд 6

    Греция. Парфенон.

  • Слайд 7

    П Р И М Е Р Ы

    Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки. Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции. Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

    Слайд 8

    В ж и в о п и с и

    Красные линии - отношения "золотогосечения". И вот что интересно: если продолжать "сечь" дальше таким же образом (в "золотой" пропорции, пополам и диагонали) - в композиции практически не находится ничего.

    Слайд 9

    пр и р о д е

    Очень совершенна форма стрекозы, которая создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.Многие насекомые (например, бабочки, стрекозы) в горизонтальном разрезе имеют простые асимметричные формы, основанные на золотом сечении.

    Слайд 11

    П о э з и и

    Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник": Картину раз высматривал сапожникИ в обуви ошибку указал;Взяв тотчас кисть, исправился художник,Вот, подбочась, сапожник продолжал:"Мне кажется, лицо немного криво...А эта грудь не слишком ли нага?Тут Апеллес прервал нетерпеливо:"Суди, дружок, не выше сапога!"Есть у меня приятель на примете:Не ведаю, в каком бы он предметеБыл знатоком, хоть строг он на словах,Но черт его несет судить о свете:Попробуй он судить о сапогах!

    Слайд 12

    Слайд 13

    Витрувий и император Август. Гравюра XVIII в. Витрувий сформулировал формулу архитектурного сооружения: «Прочность - польза - красота». Но что есть красота в архитектуре? В чем красота и очарование церкви Покрова на Нерли, маленькой (высота от основания до маковки - 24 метра), почти лишенной украшений, с простыми архитектурными формами? Построенная в 1165 году, она не потеряла своей привлекательности. Где кроется секрет красоты египетских пирамид, древнегреческого храма Парфенон, старой русской церкви Покрова на Нерли, Смольного собора в Петербурге, собора Парижской Богоматери в Париже? Французский зодчий 17 века Франсуа Блондель говорил: «Удовлетворение, которое мы испытываем, глядя на прекрасное произведение искусства, проистекает оттого, что в нем соблюдены правила и мера, ибо удовольствие в нас вызывает единственно лишь пропорции. Если же они отсутствуют, то, сколько бы мы ни украшали здание, эти наружные украшения не заменят нам внутреннюю красоту и привлекательность…» Тогда же родилось представление о том, что основой прекрасного является гармония. Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый – красоту в истине. Исследования показывают, что поиск «правила и меры» в архитектурных сооружениях, как правило, приводят к Золотому сечению и числу Фи.

    Слайд 14

    Список источников

    http://n-t.ru/tp/iz/zs.htm http://yandex.ru/yand http://armacolor.net/i http://ru.wikipedia.org/

    Посмотреть все слайды

  • error: Content is protected !!